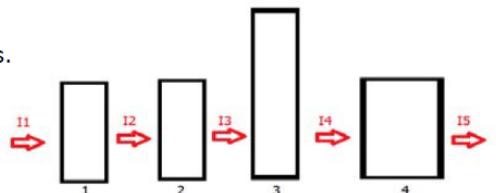


Assignment#3, Fundamentals in BioPhotonics 2021

1) (5%)



A scintillation camera that detects gamma radiations from the human body is shown in the figure. Which emissions enhance/degrade the signal to noise ratio?

2) (15%)

Let's imagine a beam propagates through many cuvettes as shown. The cuvettes differ from each other with different reasons. Here are the specs:

- 1) The concentration of the cuvette#2 is double of the others.
- 2) The height of the cuvette#3 is double of the others.
- 3) The width of the cuvette#4 is double of the others.

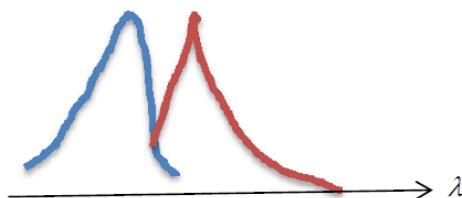
For cuvette#1, given that $\frac{I_2}{I_1} = 0.01$ and the concentration=2 M what are the ratios for succeeding intensities? (Hint: use Beer's Law)

3) (20%)

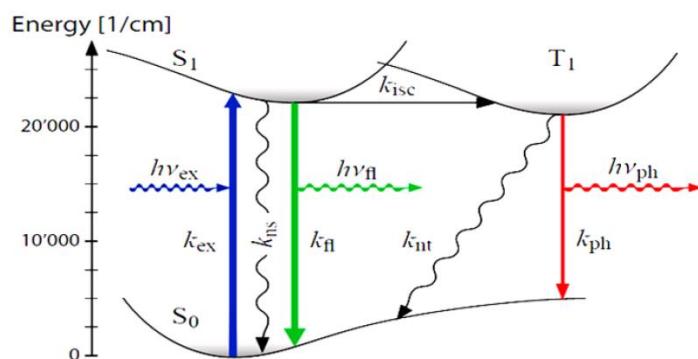
- A) Vibrational wave number of a molecule is given as $k = 3000\text{cm}^{-1}$. Find the wavelength for the transition from ground level to the first level.
- B) Vibrational force constant and wave number for XF are given as $K = 19.36 \times 10^5 \text{g/s}^2$ $k = 8.286 \times 10^3 \text{cm}^{-1}$ respectively. Find X atom from the reduced mass. (Hint: Take the molecules as simple harmonic oscillators and 1 atomic mass unit, $\text{amu} = 1.66 \times 10^{-27} \text{kg}$)

N.B. The result will not be exact but find approximately the closest element.

4) (25%)


In general, a molecule with N atoms has $3N-6$ normal modes of vibration, but a linear molecule has $3N-5$ such modes (can be derived but it is not necessary). For a transition between modes there should be change in dipole moment.

- Find number of vibrational modes for $CO_2, H_2O, O_2, N_2, CH_4, C_4H_2, NO$
- Considering the absorption capability of the molecules given above, explain why we are not concerning about the molecules in air as potential source of global warming? What about H_2O ?
- Given that NO molecule is in the lowest vibrational state ($K = 0.16 \times 10^7 \text{ g/s}^2$) find the vibrational energy and the wavelength of the photon that excites it to the next level.
- For a molecule the population ratio of i^{th} and j^{th} levels is τ_1 for electronic states, τ_2 for vibrational states and τ_3 for rotational states. Find the relation between τ_1, τ_2, τ_3 .


5) (10%)

- For the Jablonski diagram given above explain what each arrow is representing.
- The spectrum of a molecule is given below. Which one represents the excitation spectrum (verify with your answer in part A)? Why emission is mirror image of the excitation?

6) (25%)

- For the triplet state given above find an expression for the population ratio in T_1 for steady-state excitation and an expression for quantum yield of fluorescence.
- Propose a way to measure k_{fl} experimentally. Can you measure k_{int} in a similar way?